学术著作与教材 [1] 桥梁结构抗震[M]. 武汉: 华中科技大学出版社, 2020. [2] 中小跨径公路桥梁伸缩装置快速更换技术[M]. 北京: 人民交通出版社, 2020. [3] 结构动力学及其在损伤识别中的应用[M]. 武汉: 华中科技大学出版社, 2019. [4] 城市安全学[M]. 长沙: 湖南科学技术出版社, 2010.(编委, 负责第九章) [5] 结构损伤检测的智能方法[M]. 北京: 人民交通出版社, 2009.(参与编写第7章) 标准 [1] 公路桥梁伸缩装置技术状况评定标准[S]. 2021-06-08正式发布. [2] 波形钢腹板预应力混凝土组合箱梁悬臂法施工规程[S]. 2021-10-03正式发布. 近五年来的主要学术论文: (一)期刊论文: 2024 [1] Structural Health Condition Assessment for Continuous Rigid Frame Bridge under Temperature Effects based on Substructure Method and Improved Equilibrium Optimizer[J]. Structural health monitoring(SCI, 已投稿) [2] 基于LASSO-ASAPSO-LSTM的双曲拱坝缺失位移数据[J]. 水电能源科学(已投稿) [3] Missing Measurement Data Recovery in Structural Health Monitoring: The State and Challenges. Measurement.(SCI, 已投稿) [4] 基于分形盒维数和麻雀搜索算法的两阶段桥梁结构损伤识别[J]. 桥梁建设(EI,已录用) [5] Structural Damage Identification under Ambient Temperature Variations based on CNN and Normalized Modal Flexibility-Autoregressive Coefficients Hybrid Index[J]. Advances in structural engineering 2024. (SCI) [6] 基于CNN和CMCM的钢框架两阶段损伤识别研究[J/OL].工业建筑. 11.2068.TU.20240119.1434.006. (CSCD,北大核心) [7] 大跨度斜拉桥钢-混组合梁一维日照温度场高效数值模型构建及试验验证[J]. 工程力学[J/OL].工程力学. 11.2595.O3.20240115.1733.020. (EI期刊,卓越期刊) 2023 [8] Nonlinear Modeling of Temperature-Induced Bearing Displacement of Long-Span Single-Pier Rigid Frame Bridge Based on DCNN-LSTM [J]. Case Studies in Thermal Engineering, 53(2024): 103897. (SCI) [9] Two-Stage Damage Identification for Bridge Bearings Based on Sailfish Optimization and Element Relative Modal Strain Energy[J]. Structural Engineering and Mechanics, 2023, 86(6): 715-730.(SCI) [10]Vibration-Based Structural Damage Identification Using P-CNN and Time-Frequency Hybrid Index under the Conditions of Uncertainties and Incomplete Measurements[J]. International journal of structural stability and dynamics, 2023.(SCI) [11]The Current Development of Structural Health Monitoring for Bridges: A Review[J]. Buildings, 2023, 13(6): 1360.(SCI) [12]基于HTF-SAPSO算法的桥梁伸缩装置评定权重系数研究[J]. 土木工程与管理学报, 2023, 40(1): 130-135. [13]预应力筋偏差对波形钢腹板箱梁桥的受力影响[J]. beat365官网学报, 2023, 45(2): 220-226. 2022 [14]基于贝叶斯法和响应面法的重载铁路桥梁模型修正[J]. 中国铁道科学, 2022, 43(6): 47-54.(EI) [15]基于深度学习和IHPO的桥梁结构模型修正方法[J]. 广西大学学报(自然科学版), 2022, 47(5): 1147-1159.(CSCD, 北大核心) [16]套筒埋置位置对预制拼装桥墩结构抗震性能影响[J]. 长安大学学报(自然科学版), 2022,42(5): 73-85.(CSCD, 北大核心) [17]A Novel Method for Damage Identification base on Tuning-free Strategy and Simple Population Metropolis-Hastings Algorithm[J]. International Journal of Structural Stability and Dynamics, 2022, 23(4).(SCI) [18]Research on Bridge Damage Identification Based on WPE-MDS and HTF-SAPSO[J]. Buildings, 2022, 12, 1089.(SCI) [19]Temperature Effect on Vibration Properties and Vibration-Based Damage Identification of Bridge Structures: A Literature Review[J]. Buildings, 2022,12,1209.(SCI) [20]Two-stage damage identification method based on fractal theory and whale optimization algorithm[J]. Advances in structural engineering, 2022, 25(11), 2364-2381.(SCI) [21]Bayesian Damage Identification based on Autoregressive Model and MH-PSO hybrid MCMC sampling method[J]. Journal of Civil Structural Health Monitoring, 2022, 12(2): 361-390.(SCI) [22]基于改进MH算法的结构损伤识别. 华中科技大学(自然科学版), 2022, 50(8): 136-141.(SCI) [23]环境温度影响下基于支持向量机与强化飞蛾扑火优化算法的结构稀疏损伤识别[J]. 计算力学学报, 2022, 39(2): 170-177.(CSCD, 北大核心) 2021 [24]A novel two-stage structural damage identification method based on superposition of modal flexibility curvature and whale optimization algorithm[J]. International Journal of Structural Stability and Dynamics, 2021, 21(12): 2150169.(SCI) [25]Experimental and analytical study on a new kind of steel-PVA hybrid fiber concrete in the anchorage zone of bridge expansion and contraction installation[J]. Materiale in tehnologije, 2021, 2.(SCI) [26]Bearing Damage Detection of a Bridge under the Uncertain Conditions Based on the Bayesian Framework and Matrix Perturbation Method[J]. Shock and vibration, 2021, 5576362.(SCI) [27]Damage identification of bridge structures considering temperature variations based SVM and MFO[J]. Journal of Aerospace engineering, 2021, 34(2): 04020113.(SCI) [28]Improving Bridge Expansion and Contraction Installation Replacement Decision System Using Hybrid Chaotic Whale Optimization Algorithm. Applied Sciences. 2021; 11(13):6222.(SCI) [29]Structural damage identification based on substructure method and improved whale optimization algorithm[J]. Journal of civil structural health monitoring, 2021, 11(2): 351-380.(SCI) [30]基于层次分析法和模糊聚类的伸缩装置优化选型[J]. 中外公路, 2021, 41(5): 132-136.(北大核心) [31]基于模态参数的结构损伤识别应用综述[J]. beat365官网学报, 2021, 43(4): 417-427.(特邀论文) [32]基于改进鲸鱼算法和模态柔度的两阶段结构损伤识别[J].土木工程与管理学报,2021,38(3):71-77. 2020 [33]Structural damage identification based on modal frequency strain energy assurance criterion and flexibility using enhanced Moth-Flame optimization [J]. Structures, 2020, 28, 1119-1136.(SCI) [34]Damage identification of steel frame based on integration of time series and neural network under varying temperature effects[J]. Advances in civil engineering, 2020, Article ID: 4284381.(SCI) [35]Bearing Damage Detection of a Reinforced Concrete Plate Based on Sensitivity Analysis and Chaotic Moth-Flame-Invasive Weed Optimization[J]. Sensors 2020, 20, 5488.(SCI) [36]Construction and Application of Bridge Expansion and Contraction Installation Replacement Decision System Based on the Analytic Hierarchy Process. Materials. 2020; 13(18):4177.(SCI) [37]Temperature Effects on Vibration-Based Damage Detection of a Reinforced Concrete Slab. Applied Sciences. 2020; 10(8):2869.(SCI) [38]基于振动监测的工字钢梁温度-频率关系模型[J]. beat365官网学报, 2020, 42(3): 321-326. 2019 [39]Structural damage identification under temperature variations based on PSO-CS hybrid algorithm [J]. International journal of structural stability and dynamics, 2019, 19(11): 1950139.(SCI) [40]Structural damage identification based on l-1 regularization and bare bones particle swarm optimization with double jump strategy[J]. Mathematical problems in engineering, 2019, Article ID 5954104.(SCI) [41]Damage identification of bridge structure considering temperature variations based on particle swarm optimization-cuckoo search algorithm [J]. Advances in structural engineering, 2019, 22(15): 3262-3276.(SCI) [42]Structural damage identification of steel-concrete composite bridge under temperature effects based on Cuckoo Search[J]. International journal of lifecycle performance engineering, 2019, 3(2): 111-130. 2018 [43]Vibration-based structural damage identification under varying temperature effects[J]. Journal of Aerospace engineering, 2018, 31(3): 04018014.(SCI) [44]独塔混合梁斜拉桥阻尼器参数敏感性分析[J]. 桥梁建设, 2018, 48(3): 35-39.(EI) [45]基于自适应人工鱼群算法的钢梁结构损伤识别[J]. 土木工程与管理学报, 2018, 35(5): 165-168,174.(北大核心) [46]基于改进布谷鸟搜索的Benchmark框架损伤识别[J]. 振动与冲击, 2018, 37(22): 158-163.(EI) [47]温度影响下基于布谷鸟算法的钢-混组合结构桥梁的有限元模型修正[J]. 土木工程与管理学报, 2018, 35(6): 107-110, 130.(北大核心) 2017 [48]考虑温度影响的曲线箱梁有限元模型修正[J].土木工程与管理学报, 2017, 34(1): 29-32.(北大核心) [49]考虑温度影响的结构损伤识别基准有限元模型[J]. 中外公路, 2017, 37(5): 114-116.(北大核心) [50]考虑温度作用不确定性的结构损伤识别[J]. 土木工程与管理学报, 2017, 34(6): 36-40.(北大核心)) [51] 考虑边界条件变异和不同噪声的桥梁结构损伤识别[J]. 铁道建筑, 2016(12): 12-16.(北大核心) (二)会议论文 [1] 大跨度斜拉桥钢-混组合梁一维日照温度场高效数值模型构建及试验验证[C]. 第32届全国结构工程学术会议, 江西赣州, 2023.11.10~12.(优秀论文) [2] 基于深度学习的双曲拱坝缺失位移数据恢复[C]. 清华员工总会水利系分会“新水论坛”, 湖北武汉, 2023.10.21~22. [3] 基于卷积神经网络的结构健康监测缺失数据恢复与小样本损伤识别[C]. 第三届土木工程计算与仿真技术学术会议, 广西南宁, 2023.05.12~14. [4] 基于AR模型与改进贝叶斯方法的结构损伤识别研究[C]. 第十六届结构工程国际研讨会, 天津, 2023.04.01~04. [5] 环境温度影响下基于灵敏度分析与子结构方法的连续刚构桥梁健康状况精准评估[C]. 第二届土木工程计算与仿真技术学术会议, 北京, 2021-5-14~16. [6] 基于改进鲸鱼算法和模态柔度的两阶段结构损伤识别[C]. 第十一届全国结构设计基础与可靠性学术会议, 湖北武汉, 2020-11-5~7. [7] 环境温度影响下基于支持向量机与强化飞蛾扑火优化算法的结构稀疏损伤识别[C]. 第十一届全国结构设计基础与可靠性学术会议, 湖北武汉, 2020-11-5~7. [8] 基于改进灰狼优化算法与稀疏正则化的结构损伤识别[C]. 全国土木工程研究生学术论坛, 福州, 2019.(最佳创新奖) [9] 基于自适应人工鱼群算法的钢梁结构损伤识别[C]. 第七届全国结构抗振控制与健康监测学术会议, 武汉,2017-11-10~12. [10]Structural damage detection based on continuous ant colony optimization under temperature variations[C]. Proceedings of the 3rd academic conference of civil engineering and infrastructure, 2016-12-20~21, Wuhan, China. [11]Experimental study on shear lag of curved box girder under earthquake excitation[C]. International conference vibroengineering, 2015-9-26~28, Nanjing, Jiangsu, China.(EI) 专利及软著 [1] 一种盾构机空推隧道管片的压紧度测试方法[P]. 专利号: ZL201610860944.5). [2] 公路桥梁MA型模数式伸缩装置技术状况评定软件v1.0, 2021-07, 登记号: 2021SR0980734. [3] 公路桥梁MB型模数式伸缩装置技术状况评定软件v1.0, 2021-08, 登记号: 2021SR1179246. [4] 公路桥梁SC型模数式伸缩装置技术状况评定软件v1.0, 2021-08, 登记号: 2021SR1179245. [5] 公路桥梁SSA、SSB型模数式伸缩装置技术状况评定软件v1.0, 2021-08, 登记号: 2021SR1179574. [6] 公路桥梁无缝式伸缩装置技术状况评定软件v1.0, 2021-08, 登记号: 2021SR1179365. [7] 桥梁健康监测系统大数据预处理软件v1.0, 2022-06, 登记号: 2022SR0823501. [8] 基于分形维数曲率差的结构健康状况诊断软件v1.0. 2022-07, 登记号: 2022SR0920956. [9] 基于小波包频带能量值和马氏举例的结构健康状况诊断软件v1.0. 2022-07, 登记号: 2022SR0920955. [10]公路桥梁橡胶板式伸缩装置技术状况评定软件v1.0, 2022-07, 登记号: 2022SR0920974. [11]公路桥梁伸缩装置选型评价指标一致性检验软件v1.0, 2022-07,登记号: 2022SR0920957. [12]桥梁健康监测系统数据分析软件v1.0, 2022-07, 登记号: 2022SR0920959. [13]公路桥梁板式橡胶伸缩装置技术状况评定软件v1.0, 2022-08, 登记号: 2022SR1232692. [14]公路桥梁波形伸缩装置技术状况评定软件v1.0, 2022-08, 登记号: 2022SR1232689. |